高中数学说课稿

时间:2024-11-08 18:06:42
关于高中数学说课稿集锦九篇

关于高中数学说课稿集锦九篇

作为一名为他人授业解惑的教育工作者,可能需要进行说课稿编写工作,认真拟定说课稿,快来参考说课稿是怎么写的吧!以下是小编收集整理的高中数学说课稿9篇,欢迎大家分享。

高中数学说课稿 篇1

各位老师:

大家好!

我叫***,来自**。我说课的题目是《古典概型》,内容选自于高中教材新课程人教A版必修3第三章第二节,课时安排为两个课时,本节课内容为第一课时。下面我将从教材分析、教学目标分析、教法与学法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1.教材所处的地位和作用

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。它承接着前面学过的随机事件的概率及其性质,又是以后学习条件概率的基础,起到承前启后的作用。

2.教学的重点和难点

重点:理解古典概型及其概率计算公式。

难点:古典概型的判断及把一些实际问题转化成古典概型。

二、教学目标分析

1.知识与技能目标

(1)通过试验理解基本事件的概念和特点

(2)在数学建模的过程中,抽离出古典概型的两个基本特征,推导出古典概型下的概率的计算公式。

2、过程与方法:

经历公式的推导过程,体验由特殊到一般的数学思想方法。

3、情感态度与价值观:

(1)用具有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

(2)让学生掌握"理论来源于实践,并把理论应用于实践"的辨证思想。

三、教法与学法分析

1、教法分析:根据本节课的特点,采用引导发现和归纳概括相结合的教学方法,通过提出问题、思考问题、解决问题等教学过程,观察对比、概括归纳古典概型的概念及其概率公式,再通过具体问题的提出和解决,来激发学生的学习兴趣,调动学生的主体能动性,让每一个学生充分地参与到学习活动中来。

2、学法分析:学生在教师创设的问题情景中,通过观察、类比、思考、探究、概括、归纳和动手尝试相结合,体现了学生的主体地位,培养了学生由具体到抽象,由特殊到一般的数学思维能力,形成了实事求是的科学态度。

㈠创设情景、引入新课

在课前,教师布置任务,以小组为单位,完成下面两个模拟试验:

试验一:抛掷一枚质地均匀的硬币,分别记录"正面朝上"和"反面朝上"的次数,要求每个数学小组至少完成20次(最好是整十数),最后由代表汇总;

试验二:抛掷一枚质地均匀的骰子,分别记录"1点"、"2点"、"3点"、"4点"、"5点"和"6点"的次数,要求每个数学小组至少完成60次(最好是整十数),最后由代表汇总。

在课上,学生展示模拟试验的操作方法和试验结果,并与同学交流活动感受,教师最后汇总方法、结果和感受,并提出两个问题。

1.用模拟试验的方法来求某一随机事件的概率好不好?为什么?

不好,要求出某一随机事件的概率,需要进行大量的试验,并且求出来的结果是频率,而不是概率。

2.根据以前的学习,上述两个模拟试验的每个结果之间都有什么特点?]

「设计意图」通过课前的模拟实验,让学生感受与他人合作的重要性,培养学生运用数学语言的能力。随着新问题的提出,激发了学生的求知欲望,通过观察对比,培养了学生发现问题的能力。

㈡思考交流、形成概念

学生观察对比得出两个模拟试验的相同点和不同点,教师给出基本事件的概念,并对相关特点加以说明,加深对新概念的理解。

[基本事件有如下的两个特点:

(1)任何两个基本事件是互斥的;

(2)任何事件(除不可能事件)都可以表示成基本事件的和.]

「设计意图」让学生从问题的相同点和不同点中找出研究对象的对立统一面,这能培养学生分析问题的能力,同时也教会学生运用对立统一的辩证唯物主义观点来分析问题的一种方法。教师的注解可以使学生更好的把握问题的关键。

例1从字母a、b、c、d中任意取出两个不同字母的试验中,有哪些基本事件?

先让学生尝试着列出所有的基本事件,教师再讲解用树状图列举问题的优点。

「设计意图」将数形结合和分类讨论的思想渗透到具体问题中来。由于没有学习排列组合,因此用列举法列举基本事件的个数,不仅能让学生直观的感受到对象的总数,而且还能使学生在列举的时候作到不重不漏。解决了求古典概型中基本事件总数这一难点

观察对比,发现两个模拟试验和例1的共同特点:

让学生先观察对比,找出两个模拟试验和例1的共同特点,再概括总结得到的结论,教师最后补充说明。

[经概括总结后得到:

(1)试验中所有可能出现的基本事件只有有限个;(有限性)

(2)每个基本事件出现的可能性相等。(等可能性)

我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

「设计意图」培养运用从具体到抽象、从特殊到一般的辩证唯物主义观点分析问题的能力,充分体现了数学的化归思想。启发诱导的同时,训练了学生观察和概括归纳的能力。通过列出相同和不同点,能让学生很好的理解古典概型。

㈢观察分析、推导方程

问题思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?

教师提出问题,引导学生类比分析两个模拟试验和例1的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系,最后概括总结得出古典概型计算任何事件的概率计算公式:

「设计意图」鼓励学生运用观察类比和从具体到抽象、从特殊到一般的辩证唯物主义方法来分析问题,同时让学生感受数学化归思想的优越性和这一做法的合理性,突出了古典概型的概率计算公式这一重点。

提问:

(1)在例1的实验中,出现字母"d"的概率是多少?

(2)在使用古典概型的概率公式时,应该注意什么?

「设计意图」教师提问,学生回答,深化对古典概型的概率计算公式的理解,也抓住了解决古典概型的概率计算的关键。

㈣例题分析、推广应用

例2单选题是标准化考试中常用的题型,一般是从A,B,c,D四个选项中选择一个正确答案。如果考生掌握了考差的内容,他可以选择唯一正确的答案。假设考生不会做,他随机的选择一个答案,问他答对的概率是多少?

学生先思考再回答,教师对学生没有注意到的关键点加以说明。

「设计意图」让学生明确决概率的计算问题的关键是 ……此处隐藏15497个字……,不等式的解集,归纳出它们的共同特征:都是由一些确定的、互不相同的对象组成的整体.

(2)根据上面的分析与讨论,以及归纳出的共同特征,讲解集合的含义,元素与集合的关系,一些常见的数集.

(3)为了化解教学难点,我将结合具体的例子,讲解列举法与描述法.

(4)为了加强学生对集合的含义的理解,我将与学生一起归纳出集合的元素的特征. (5)为了提高学生解决实际问题的能力,我将讲解三个不同题型、不同难度的例题. 3.课堂练习

为了使得学生掌握等差数列的定义与通项公式,提高解题技能,我将在课堂上布置3道不同类型、不同难度的练习题.

4.归纳小结

完成以上的教学内容后,我将组织学生对本节课的内容做一个总结,强调重点. 5.布置作业

为了巩固所学知识,激发学生的求知欲,我将布置3道不同类型、不同难度的作业题. 六、板书设计

结合中学黑板的特点,我将如下板书本节教学内容: 集合的含义与表示 实例 1. 2. 3. 集合的含义 常见数集 元素与集合的关系 集合的表示方法 集合的元素的特征 例1 例2 例3 练习 作业 各位老师,以上只是我的一种预设方案,但课堂千变万化,我将根据实际情况灵活掌握,随机发挥.本说课一定存在诸多不足,恳请各位老师提出宝贵意见,谢谢! 1.1.2集合间的基本关系

数学必修1第一章第二节第1小节《集合间的基本关系》说课稿.

一 、教学内容分析

集合概念及其理论是近代数学的基石,集合语言是现代数学的基本语言,通过学习、使用集合语言,有利于学生简洁、准确地表达数学内容,高中课程只将集合作为一种语言来学

习,学生将学会使用最基本的集合语言表示有关的数学对象,发展运用数学语言进行交流的能力.

本章集合的初步知识是学生学习、掌握和使用数学语言的基础,是高中数学学习的出发点。本小节内容是在学习了集合的概念以及集合的表示方法、元素与集合的从属关系的基础上,进一步学习集合与集合之间的关系,同时也是下一节学习集合之间的运算的基础,因此本小节起着承上启下的重要作用.

本节课的教学重视过程的教学,因此我选择了启发式教学的教学方式。通过问题情境的设置,层层深入,由具体到抽象,由特殊到一般,帮助学生的逐步提升数学思维。

二、学情分析

本节课是学生进入高中学习的第3节数学课,也是学生正式学习集合语言的第3节课。由于一切对于学生来说都是新的,所以学生的学习兴趣相对来说比较浓厚,有利于学习活动的展开。而集合对于学生来说既熟悉又陌生,熟悉的是在初中就已经使用数轴求简单不等式(组)的解,用图示法表示四边形之间的关系,陌生的是使用集合的语言来描述集合之间的关系。而从具体的实例中抽象出集合之间的包含关系的本质,对于学生是一个挑战。

根据上面对教材的分析,并结合学生的认知水平和思维特点,确定本节课的教学目标和教学重、难点如下:

三、教学目标: 知识与技能目标:

(1)理解集合之间包含和相等的含义; (2)能识别给定集合的子集;

(3)能使用Venn图表达集合之间的包含关系 过程与方法目标:

(1)通过复习元素与集合之间的关系,对照实数的相等与不相等的关系联系元素与集合之间的从属关系,探究集合之间的包含和相等关系;

(2)初步经历使用最基本的集合语言表示有关的数学对象的过程,体会集合语言,发展运用数学语言进行交流的能力;

情感、态度、价值观目标:

(1)了解集合的包含、相等关系的含义,感受集合语言在描述客观现实和数学问题中的意义;

(2)探索利用直观图示(Venn图)理解抽象概念,体会数形结合的思想。

四、本节课教学的重、难点:

重点:(1)帮助学生由具体到抽象地认识集合与集合之间的关系——子集; (2)如何确定集合之间的关系; 难点:集合关系与其特征性质之间的关系 五、教学过程设计

1.新课的引入——设置问题情境,激发学习兴趣

我们的教学方式,要服务于学生的学习方式。那我们来思考一下,在何种情况下,学生学得最好?我想,当学生感兴趣时;当学生智力遭遇到挑战时;当学生能自主地参与探索和创新时;当学生能够学以致用时;当学生得到鼓励与信任时,他们学得最好。数学教学活动必须建立在学生的认知发展水平和已有的知识经验基础之上,这样才能让学生体验到成就感,保持积极的兴奋状态。而集合的语言对于学生来说是陌生的,虽然比较容易理解,但是由于概念多,符号多,学生容易产生厌烦心理,如何让学生长时间兴趣盎然地投入到集合关系的学习中呢?我在整个教学过程中层层设问,不断地向学生提出挑战,以激发学生的学习兴趣。在引入的环节,我设计了下面的问题情境1:元素与集合有“属于”、“不属于”的关系;数与数之间有“相等”、“不相等”的关系;那么集合与集合之间有什么样的关系呢?问题的抛出犹如一石激起千层浪,在这儿,答案并不重要,重要的是学生迫切寻求答案的愿望,激发学生的求知欲。在学生讨论的基础上提出这一节课我们来共同探讨集合之间的基本关系。(板书课题)

2.概念的形成——从特殊到一般、从具体到抽象,从已知到未知 问题情境1的探究:

具体实例1: (1)A={1,2,3}; B={1,2,3,4,5}; (2)A={菱形}, B={平行四边形} (3)A={x| x>2}, B={x| x>1};

此环节设置了三个具体实例,包含了有限集、无限集、数集(包括不等式)、图形的集合。第一个例子为有限集数集,最为简单直观,对学生初步认识子集,理解子集的概念很有帮助;第二个例子是图形集合且是无限集,需要通过探究图形的性质之间的关系找出集合间的关系;第三个例子是无限数集,基于学生初中阶段已经学习了用数轴表示不等式的解集,启发学生可以通过数形结合的方式来研究集合之间的关系,从而引出Venn图。对第一个例子,借助多媒体演示动画,帮助学生体会“任意”性。使学生在经历直观感知、观察发现的基础上建构子集的概念,并且我在教学的过程中特别注重让学生说,借此来学习运用集合语言进行交流,对于学生的创新意识和创新结果我都给予积极的评价。

3、概念的剖析

(1)A中的元素x与集合B的关系决定了集合A与集合B之间的关系,

(2)符号的表示,Venn图的引入及其用Venn图表示集合的方法。

这里引入了许多新的符号,对初学者来说容易混淆,是一个易错点,因此我在这里设置了一个填空小练习:

0 {0}, {正方形} {矩形},三角形 {等边三角形} {梯形} {平行四边形},{x|-1

并引导学生类比数与数之间的“≤”“≥”符号来记忆“?”“?”符号。

4、概念的深化——集合的相等与真子集

问题情境2:如果集合A是集合B的子集,那么对于任意的x?A,有x?B;那么对于集合B中的任何一个元素,它与集合A之间又可能是什么关系呢?

《关于高中数学说课稿集锦九篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式