高中数学说课稿

时间:2024-11-08 21:50:34
有关高中数学说课稿集合8篇

有关高中数学说课稿集合8篇

作为一名默默奉献的教育工作者,可能需要进行说课稿编写工作,说课稿是进行说课准备的文稿,有着至关重要的作用。那么写说课稿需要注意哪些问题呢?下面是小编帮大家整理的高中数学说课稿8篇,希望能够帮助到大家。

高中数学说课稿 篇1

各位老师:

大家好!我叫***,来自**。我说课的题目是《概率的基本性质》,内容选自于高中教材新课程人教A版必修3第三章第一节,课时安排为三个课时,本节课内容为第三课时。下面我将从教材分析、教学目标分析、教法分析、教学过程分析四大方面来阐述我对这节课的分析和设计:

一、教材分析

1、教材所处的地位和作用

本节课主要包含了两部分内容:一是事件的关系与运算,二是概率的基本性质,多以基本概念和性质为主。它是本册第二章统计的延伸,又是后面"古典概型"及"几何概型"的基础。在整个教学中起到承上启下的作用。同时也是新课改以来考查的热点之一。

2、教学的重点和难点

重点:概率的加法公式及其应用;事件的关系与运算。

难点:互斥事件与对立事件的区别与联系

二、教学目标分析

1.知识与技能目标

⑴了解随机事件间的基本关系与运算;

⑵掌握概率的几个基本性质,并会用其解决简单的概率问题。

2、过程与方法:

⑴通过观察、类比、归纳培养学生运用数学知识的综合能力;

⑵通过学生自主探究,合作探究培养学生的动手探索的能力。

3、情感态度与价值观:

通过数学活动,了解教学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的情趣。

三、教法分析

采用实验观察、质疑启发、类比联想、探究归纳的教学方法。

四、教学过程分析

1、创设情境,引入新课

在掷骰子的试验中,我们可以定义许多事件,如:

c1=﹛出现的点数=1﹜,c2=﹛出现的点数=2﹜

c3=﹛出现的点数=3﹜,c4=﹛出现的点数=4﹜

c5=﹛出现的点数=5﹜,c6=﹛出现的点数=6﹜

D1=﹛出现的点数不大于1﹜D2=﹛出现的点数大于3﹜

D3=﹛出现的点数小于5﹜,E=﹛出现的点数小于7﹜

f=﹛出现的点数大于6﹜,G=﹛出现的点数为偶数﹜

H=﹛出现的点数为奇数﹜

⑴以引入例中的事件c1和事件H,事件c1和事件D1为例讲授事件之的包含关系和相等关系。

⑵从以上两个关系学生不难发现事件间的关系与集合间的关系相类似。进而引导学生思考,是否可以把事件和集合对应起来。

「设计意图」引出我们接下来要学习的主要内容:事件之间的关系与运算

2、探究新知

㈠事件的关系与运算

⑴经过上面的思考,我们得出:

试验的可能结果的全体←→全集

↓↓

每一个事件←→子集

这样我们就把事件和集合对应起来了,用已有的集合间关系来分析事件间的关系。

集合的并→两事件的并事件(和事件)

集合的交→两事件的交事件(积事件)

在此过程中要注意帮助学生区分集合关系与事件关系之间的不同。

(例如:两集合A∪B,表示此集合中的任意元素或者属于集合A或者属于集合B;而两事件A和B的并事件A∪B发生,表示或者事件A发生,或者事件B发生。)

「设计意图」为更好地理解互斥事件和对立事件打下基础,

⑵思考:①若只掷一次骰子,则事件c1和事件c2有可能同时发生么?

②在掷骰子实验中事件G和事件H是否一定有一个会发生?

「设计意图」这两道思考题都很容易得到答案,主要目的是为引出接下来将要学习的互斥事件和对立事件,让学生从实际案例中体验它们各自的特征以及它们之间的区别与联系。

⑶总结出互斥事件和对立事件的概念,并通过多媒体的图形演示使学生们能更好地理解它们的特征以及它们之间的区别与联系。

⑷练习:通过多媒体显示两道练习,目的是让学生们能够及时巩固对互斥事件和对立事件的学习,加深理解。

㈡概率的基本性质:

⑴回顾:频率=频数/试验的次数

我们知道当试验次数足够大时,用频率来估计概率,由于频率在0~1之间,所以,可以得到概率的基本性质、

(通过对频率的理解并结合前面投硬币的实验来总结出概率的基本性质,师生共同交流得出结果)

3、典型例题探究

例1一个射手进行一次射击,试判断下列事件哪些是互斥事件?哪些是对立事件?

事件A:命中环数大于7环;事件B:命中环数为10环;

事件c:命中环数小于6环;事件D:命中环数为6、7、8、9、10环、

分析:要判断所给事件是对立还是互斥,首先将两个概念的联系与区别弄清楚

例2如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方块(事件B)的概率是1/4,问:

(1)取到红色牌(事件c)的概率是多少?

(2)取到黑色牌(事件D)的概率是多少?

分析:事件c是事件A与事件B的并,且A与B互斥,因此可用互斥事件的概率和公式求解;事件c与事件D是对立事件,因此P(D)=1—P(c).

「设计意图」通过这两道例题,进一步巩固学生对本节课知识的掌握,并将所学知识应用到实际解决问题中去。

4、课堂小结

⑴理解事件的关系和运算

⑵掌握概率的基本性质

「设计意图」小结是引导学生对问题进行回味与深化,使知识成为系统。让学生尝试小结,提高学生的总结能力和语言表达能力。教师补充帮助学生全面地理解,掌握新知识。

5、布置作业

习题3、1A1、3、4

「设计意图」课后作业的布置是为了检验学生对本节课内容的理解和运用程度,并促使学生进一步巩固和掌握所学内容。

五、板书设计

概率的基本性质

一、事件间的关系和运算

二、概率的基本性质

三、例1的板书区

例2的板书区

四、规律性质总结

高中数学说课稿 篇2

各位领导、专家、同仁:您们好!

我说课的内容是高中数学第二册(上册)第七章《直线和圆的方程》中的第六节“曲线和方程”的第一课时,下面我的说课将从以下几个方面进行阐述:

一、教材分析

教材的地位和作用

……此处隐藏11779个字……方程,从而很自然的进入了本课的主题。用实际问题创设问题情境,让学生感受到问题来源于实际,应用于实际,激发了学生的学习兴趣和学习欲望。这样获取的知识,不但易于保持,而且易于迁移。

通过对问题一的探究,抓住了学生的注意力,把学生的思维引到用坐标法研究圆的方程上来,此时再把问题深入,进入第二环节。

(二)深入探究——获得新知

问题二 1。根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?

2。如果圆心在,半径为时又如何呢?

好学教育:

这一环节我首先让学生对问题一进行归纳,得到圆心在原点,半径为4的圆的标准方程后,引导学生归纳出圆心在原点,半径为r的圆的标准方程。然后再让学生对圆心不在原点的情况进行探究。我预设了三种方法等待着学生的探究结果,分别是:坐标法、图形变换法、向量平移法。

得到圆的标准方程后,我设计了由浅入深的三个应用平台,进入第三环节。

(三)应用举例——巩固提高

I。直接应用 内化新知

问题三 1。写出下列各圆的标准方程:

(1)圆心在原点,半径为3;

(2)经过点,圆心在点。

2。写出圆的圆心坐标和半径。

我设计了两个小问题,第一题是直接或间接的给出圆心坐标和半径求圆的标准方程,第二题是给出圆的标准方程求圆心坐标和半径,这两题比较简单,可以安排学生口答完成,目的是先让学生熟练掌握圆心坐标、半径与圆的标准方程之间的关系,为后面探究圆的切线问题作准备。

II。灵活应用 提升能力

问题四 1。求以点为圆心,并且和直线相切的圆的方程。

2。求过点,圆心在直线上且与轴相切的圆的方程。

3。已知圆的方程为,求过圆上一点的切线方程。

你能归纳出具有一般性的结论吗?

已知圆的方程是,经过圆上一点的切线的方程是什么?

我设计了三个小问题,第一个小题有了刚刚解决问题三的基础,学生会很快求出半径,根据圆心坐标写出圆的标准方程。第二个小题有些困难,需要引导学生应用待定系数法确定圆心坐标和半径再求解,从而理解必须具备三个独立的条件才可以确定一个圆。第三个小题解决方法较多,我预设了四种方法再一次为学生的发散思维创设了空间。最后我让学生由第三小题的结论进行归纳、猜想,在论证经过圆上一点圆的切线方程的过程中,又一次模拟了真理发现的过程,使探究气氛达到高潮。

III。实际应用 回归自然

问题五 如图是某圆拱桥的一孔圆拱的示意图,该圆拱跨度AB=20m,拱高OP=4m,在建造时每隔4m需用一个支柱支撑,求支柱的长度(精确到0。01m)。

好学教育:

我选用了教材的例3,它是待定系数法求出圆的三个参数的又一次应用,同时也与引例相呼应,使学生形成解决实际问题的一般方法,培养了学生建模的习惯和用数学的意识。

(四)反馈训练——形成方法

问题六 1。求过原点和点,且圆心在直线上的圆的标准方程。

2。求圆过点的切线方程。

3。求圆过点的切线方程。

接下来是第四环节——反馈训练。这一环节中,我设计三个小题作为巩固性训练,给学生一块“用武”之地,让每一位同学体验学习数学的乐趣,成功的喜悦,找到自信,增强学习数学的愿望与信心。另外第3题是我特意安排的一道求过圆外一点的圆的切线方程,由于学生刚刚归纳了过圆上一点圆的切线方程,因此很容易产生思维的负迁移,另外这道题目有两解,学生容易漏掉斜率不存在的情况,这时引导学生用数形结合的思想,结合初中已有的圆的知识进行判断,这样的设计对培养学生思维的严谨性具有良好的效果。

(五)小结反思——拓展引申

1。课堂小结

把圆的标准方程与过圆上一点圆的切线方程加以小结,提炼数形结合的思想和待定系数的方法 ①圆心为,半径为r 的圆的标准方程为:

圆心在原点时,半径为r 的圆的标准方程为:。

②已知圆的方程是,经过圆上一点的切线的方程是:。

2。分层作业

(A)巩固型作业:教材P81—82:(习题7。6)1,2,4。(B)思维拓展型作业:试推导过圆上一点的切线方程。

3。激发新疑

问题七 1。把圆的标准方程展开后是什么形式?

2。方程表示什么图形?

在本课的结尾设计这两个问题,作为对这节课内容的巩固与延伸,让学生体会知识的起点与终点都蕴涵着问题,旧的问题解决了,新的问题又产生了。在知识的拓展中再次掀起学生探究的热情。另外它为下节课研究圆的一般方程作了重要的准备。

以上是我纵向的教学过程及简单的设计意图,接下来,我从三个方面横向的进一步阐述我的教学设计: 横向阐述教学设计

(一)突出重点 抓住关键 突破难点

好学教育:

求圆的标准方程既是本节课的教学重点也是难点,为此我布设了由浅入深的学习环境,先让学生熟悉圆心、半径与圆的标准方程之间的关系,逐步理解三个参数的重要性,自然形成待定系数法的解题思路,在突出重点的同时突破了难点。

第二个教学难点就是解决实际应用问题,这是学生固有的难题,主要是因为应用问题的题目冗长,学生很难根据问题情境构建数学模型,缺乏解决实际问题的信心,为此我首先用一道题目简洁、贴近生活的实例进行引入,激发学生的求知欲,同时我借助多媒体课件的演示,引导学生真正走入问题的情境之中,并从中抽象出数学模型,从而消除畏难情绪,增强了信心。最后再形成应用圆的标准方程解决实际问题的一般模式,并尝试应用该模式分析和解决第二个应用问题——问题五。这样的设计,使学生在解决问题的同时,形成了方法,难点自然突破。

(二)学生主体 教师主导 探究主线

本节课的设计用问题做链,环环相扣,使学生的探究活动贯穿始终。从圆的标准方程的推导到应用都是在问题的指引、我的指导下,由学生探究完成的。另外,我重点设计了两次思维发散点,分别是问题二和问题四的第三问,要求学生分组讨论,合作交流,为学生设立充分的探究空间,学生在交流成果的过程中,既体验了科学研究和真理发现的复杂与艰辛,又在我的适度引导、侧面帮助、不断肯定下顺利完成了探究活动并走向成功,在一个个问题的驱动下,高效的完成本节的学习任务。

(三)培养思维 提升能力 激励创新

为了培养学生的理性思维,我分别在问题一和问题四中,设计了两次由特殊到一般的学习思路,培养学生的归纳概括能力。在问题的设计中,我利用一题多解的探究,纵向挖掘知识深度,横向加强知识间的联系,培养了学生的创新精神,并且使学生的有效思维量加大,随时对所学知识和方法产生有意注意,使能力与知识的形成相伴而行。

以上是我对这节课的教学预设,具体的教学过程还要根据学生在课堂中的具体情况适当调整,向生成性课堂进行转变。最后我以赫尔巴特的一句名言结束我的说课,发挥我们的创造性,力争“使教育过程成为一种艺术的事业”。

《有关高中数学说课稿集合8篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式