小学二年级数学知识点
在年少学习的日子里,说到知识点,大家是不是都习惯性的重视?知识点就是掌握某个问题/知识的学习要点。哪些才是我们真正需要的知识点呢?以下是小编收集整理的小学二年级数学知识点,欢迎大家借鉴与参考,希望对大家有所帮助。
小学二年级数学知识点1数学广角
1、简单的排列和组合
(1)培养数学学习的兴趣和利用数学方法解决问题的意识。
(2)让学生经历摆学具、画图示、列图表等过程,逐步抽象出全面的、有序的排列和组合的方法,使学生的思维逐步由具体过渡到抽象。
(3)能找出最简单的事物的排列数和组合数,在活动中培养合作交流的意识和有序思考问题的能力。
2、简单的推理
(1)经历对生活中的某些现象进行判断、推理的过程。
(2)能借助"做标记"、"列图表"等方式整理信息,并能对生活中的某些现象按一定方法进行推理。
(3)能有条理的表达自己思考的过程,与同伴进行合作与交。
二年级的学生在经过一年的数学学习后,基本知识技能有了很大的提高,对数学学习也有了一定的了解。但由于一年级学习方法和学习习惯加上个人思维成长的因素,使得优等生思维活跃,发言积极;中等生课堂上几乎是“默默无闻”;后进生学习方法不得当,对每个基础知识掌握的速度总是慢许多,差距逐渐拉开。但二年级能找到适合自己的学习方法,在学习成绩和知识点掌握方面均有可能赶上优等生之列。
表内乘法
1、乘法的初步认识
(1)结合数一数、摆一摆的具体活动,经历相同加数连加算式的抽象过程,感受这种运算与日常生活的联系,体会学习乘法的必要性。
(2)结合具体情境,经历把相同加数的连加算式抽象为乘法算式的过程,初步体会乘法运算的意义,体会乘法和加法之间的联系与区别。
(3)会把相同加数的连加算式改写为乘法算式,知道写法、读法,并能应用加法计算简单的乘法算式的结果。
2、乘法的初步认识
(1)能根据加法算式列出乘法算式,知道乘法算式中各部分的名称及含义。
(2)知道用乘法算式表示"相同加数连加算式"比较简便,为进一步学习乘法奠定基础。
(3)能从生活情境中发现并提出可以用乘法解决的问题,初步学会解决简单的乘法问题。
3、5的乘法口诀
(1)结合具体情境,进一步体会乘法的意义,并经历5的乘法算式的计算过程和5的乘法口诀的编制过程。
(2)能用5的乘法口诀进行乘法计算,体验运用乘法口诀的优越性。
(3)能用5的乘法运算解决生活中简单的实际问题。
4、2、3、4的乘法口诀
(1)结合具体情境,经历2、3、4的乘法口诀的编制过程,进一步体会编制乘法口诀的方法。
(2)能够发现每一组乘法口诀的排列规律,培养有条理的思考问题的习惯,逐步的发展数感。
(3)掌握2、3、4的乘法口诀,会用已经学过的口诀进行乘法计算,并能解决简单的实际问题。
5、56页例5
(1)结合具体情境,掌握乘加、乘减算式的运算顺序,并能正确计算。
(2)能用含有两级运算的算式解决简单的实际问题,培养应用数学的意识和能力。
(3)培养学生从不同的角度观察思考问题的习惯,体现解决问题策略的多样化。
(4)在做一做2题中,应适当拓展,引导学生发现相邻两句口诀之间的关系,帮助学生理解和记忆乘法口诀。
6、6的乘法口诀
(1)经历独立探索、编制6的乘法口诀的过程,体验从已有的知识出发探索新知识的思想和方法。
(2)掌握6的乘法口诀,并能用它解决一些简单的实际问题。
角的初步认识
1、
(1)结合生活情境,认识到生活中处处有角,体会数学与生活的联系。
(2)通过"找一找"、"说一说"、"折一折"、"画一画"等活动,初步认识角,并且能够辨认。
(3)知道一个角各部分的名称,会正确画角。
2、
(1)结合具体情境,直观认识直角,会画直角标记。
(2)能利用工具判断一个角是不是直角,会利用工具画直角。
(3)知道:一个角的大小与边的长短无关。
100以内的加法和减法
1、不进位加法
1)在具体情境中,进一步体会加法的意义。
2)探索并掌握两位数加两位数不进位)的计算方法。
3)让学生感受加法计算和日常生活的联系,进一步提高解决问题的能力。
2、进位加法
1)在具体情境中,进一步体会加法的意义。
2)探索并掌握两位数加两位数进位加的计算方法,能正确进行计算。
3)能用两位数的加法解决简单的实际问题,进一步提高解决问题的能力。
3、不退位减法
1)在具体情境中,进一步体会减法的意义。
2)探索并掌握两位数减两位数不退位)的计算方法。
3)进一步培养提出问题、解决问题的意识和能力。
4、退位减法
1)在具体情境中,进一步体会减法的意义。
2)探索并掌握两位数减两位数退位减的计算方法,能正确进行计算。
3)能用两位数的减法解决简单的实际问题,进一步提高解决问题的能力。
5、"多几"、"少几"的应用
1)在具体情境中,理解"比某数多几或少几"的实际问题。
2)可以利用学具的操作,让学生搞清楚是与哪个数量进行比较,然后发生了什么变化,最后再用算式记录下来。
3)能正确列式解决相应的实际问题。
4)渗透统计的思想和方法。
6、连加、连减
1)探索并掌握100以内连加和连减的计算方法,进一步体验算法多样化。
2)能用100以内的连加和连减运算解决生活中的实际问题,并体验解决问题策略的多样性。
长度单位
长度单位是指丈量空间距离上的基本单元,是人类为了规范长度而制定的基本单位。
其国际单位是“米”(m),常用单位有毫米(mm)、厘米(cm)、分米(dm)、千米(km)等等。长度单位在各个领域都有重要的作用。
米:国际单位制中长度的标准单位是“米”,用符号“m”表示。
分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
厘米:长度单位,简写符号为:cm。
毫米:英文缩写为mm
(1厘米=10毫米=0.1分米=0.01米=0.0000 ……此处隐藏17900个字……p>
3.分米:分米(dm)是长度的公制单位之一,1分米相当于1米的十分之一。
4.厘米:厘米,长度单位。简写(符号)为:cm.
有关厘米的单位转换: 1厘米=10毫米=0.1分米=0.01米=0.00001千米。
5.毫米:英文缩写MM(或mm、㎜)
进率关:1毫米=0.1厘米;
6.进位:加法运算中,每一数位上的数等于基数时向前一位数进一。
以个位向十位进位为例:基数为10(2进制的基数是2,类推),个位这个数位上的数量达到了10的情况下,则个位向前一位进1,成为一个十。
在十进制的算法中,个位满十,在十位中加1;十位满十,在百位中加一。
7.不退位减:减法运算中不用向高位借位的减法运算。例:56-22=34。6能够减去2,所以不用向高位5借位。
8.退位减:减法运算中必须向高位借位的减法运算。例:51-22=39.
1不能够减去2,所以必须向高位的5借位。
9.连加:多个数字连续相加叫做连加。例如:28+24+23=85.
10.连减:多个数字连续相减叫做连减。例如:85-40-26=19.
11.加减混合:在运算中既有加法又有减法的运算。例如:67-25+28=70。
12.角:具有公共端点的两条不重合的射线组成的图形叫做角。这个公共端点叫做角的顶点,这两条射线叫做角的两条边。
符号:∠
13.乘法算式中各数的名称:是指将相同的数加法起来的快捷方式。其运算结果称为积。
“×”是乘号,乘号前面和后面的数叫做因数,“=”是等于号,等于号后面的数叫做积。
10(因数) ×(乘号) 200(因数) =(等于号) 20xx(积)
14.1—6的乘法口诀
1×1=1
1×2=22×2=4
1×3=32×3=63×3=9
1×4=42×4=83×4=124×4=16
1×5=52×5=103×5=154×5=205×5=25
1×6=62×6=123×6=184×6=245×6=306×6=36
15.7——9的乘法口诀
1×7=72×7=143×7=214×7=285×7=356×7=427×7=49
1×8=82×8=163×8=244×8=325×8=406×8=487×8=568×8=64
1×9=92×9=183×9=274×9=365×9=456×9=547×9=638×9=729×9=81
扩展资料:
1.角的动态定义
一条射线绕着它的端点从一个位置旋转到另一个位置所形成的图形叫做角。所旋转射线的端点叫做角的顶点,开始位置的射线叫做角的始边,终止位置的射线叫做角的终边
2.角的种类
角的大小与边的长短没有关系;角的大小决定于角的两条边张开的程度,张开的越大,角就越大,相反,张开的越小,角则越小。在动态定义中,取决于旋转的方向与角度。角可以分为锐角、直角、钝角、平角、周角、负角、正角、优角、劣角、0角这10种。以度、分、秒为单位的角的度量制称为角度制。此外,还有密位制、弧度制等。
锐角:大于0°,小于90°的角叫做锐角。
直角:等于90°的角叫做直角。
钝角:大于90°而小于180°的角叫做钝角。
负角:按照顺时针方向旋转而成的角叫做负角。
正角:逆时针旋转的角为正角。
0角:等于零度的角。
余角和补角:两角之和为90°则两角互为余角,两角之和为180°则两角互为补角。等角的余角相等,等角的补角相等。
对顶角:两条直线相交后所得的只有一个公共顶点且两个角的两边互为反向延长线,这样的两个角叫做互为对顶角。两条直线相交,构成两对对顶角。互为对顶角的两个角相等。
还有许多种角的关系,如内错角,同位角,同旁内角(三线八角中,主要用来判断平行)!
3.乘法的运算定律
整数的乘法运算满足:交换律,结合律,分配律,消去律。
随着数学的发展,运算的对象从整数发展为更一般群。
乘法交换律:a×b=b×a
乘法结合律:(a×b)×c=a×(b×c)
乘法分配律:(a+b)×c=a×c+b×c
小学二年级数学知识点14(一)乘除四则运算
1.乘法和除法互为逆运算。
2.在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。
3.被除数÷除数=商 除数=被除数÷商 被除数=商×除数
(二)小数四则运算
1. 小数加法:
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2. 小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.
3. 小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。
4. 小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。
5. 乘方:
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1. 分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。
3. 分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是1的两个数叫做互为倒数。
5. 分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积 与其中一个因数,求另一个因数的运算。
(四)运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c) 。
文档为doc格式